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Abstract

Stochastic analysis of random heterogeneous media (polycrystalline materials, porous media, functionally graded mate-
rials) provides information of significance only if realistic input models of the topology and property variations are used.
This paper proposes a framework to construct such input stochastic models for the topology and thermal diffusivity vari-
ations in heterogeneous media using a data-driven strategy. Given a set of microstructure realizations (input samples) gen-
erated from given statistical information about the medium topology, the framework constructs a reduced-order stochastic
representation of the thermal diffusivity. This problem of constructing a low-dimensional stochastic representation of
property variations is analogous to the problem of manifold learning and parametric fitting of hyper-surfaces encountered
in image processing and psychology.

Denote by M the set of microstructures that satisfy the given experimental statistics. A non-linear dimension reduction
strategy is utilized to map M to a low-dimensional region, A. We first show that M is a compact manifold embedded in a
high-dimensional input space Rn. An isometric mapping F from M to a low-dimensional, compact, connected set
A � Rdðd � nÞ is constructed. Given only a finite set of samples of the data, the methodology uses arguments from graph
theory and differential geometry to construct the isometric transformation F : M! A. Asymptotic convergence of the
representation of M by A is shown. This mapping F serves as an accurate, low-dimensional, data-driven representation
of the property variations.

The reduced-order model of the material topology and thermal diffusivity variations is subsequently used as an input in
the solution of stochastic partial differential equations that describe the evolution of dependant variables. A sparse grid
collocation strategy (Smolyak algorithm) is utilized to solve these stochastic equations efficiently. We showcase the meth-
odology by constructing low-dimensional input stochastic models to represent thermal diffusivity in two-phase microstruc-
tures. This model is used in analyzing the effect of topological variations of two-phase microstructures on the evolution of
temperature in heat conduction processes.
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1. Introduction and outline

With the rapid advances in computational power and easier access to high-performance computing plat-
forms, it has now become possible to computationally investigate realistic multiscale, multidomain, multiphys-
ics materials problems to an unparalleled extent. As a direct consequence of this computational ability, there
has been growing awareness that the tightly coupled and highly non-linear systems that such problems are
composed of are affected to a significant extent by the inherent uncertainties in material properties and system
characteristics. To accurately predict the performance of such systems, it then becomes essential for one to
include the effects of these input uncertainties into the model system and understand how they propagate
and alter the final solution.

In most complex systems involving multiple coupled physical phenomena, the material (thermo-physical)
properties as well as the material distribution (topology) vary at a length scale much smaller than the system
size. Familiar systems include analysis of thermal transport through devices (nozzle flaps, gears, etc.) that are
composed of polycrystals and/or functionally graded materials, hydrodynamic transport through porous
media and chemical flow through packed filtration beds. In such problems, the only information that is usually
available experimentally to quantify these variations are statistical correlations. This leads to an analysis of the
problem assuming that the property and topological variations are random fields satisfying the experimental
correlations. To perform any such analysis, one must first construct models of these variations to be used as
inputs in the subsequent uncertainty analysis. The analysis of the effect of such uncertainties on the system can
basically be broken down into two major steps: (i) construction of a stochastic model (preferably a low-dimen-
sional, continuous mapping) that encodes and quantifies the variation of material topology and properties in a
mathematically rigorous way, and (ii) using this model as an input to the corresponding stochastic partial dif-
ferential equations (SPDEs) that describe the relevant physical phenomena and solving for the evolution of the
desired dependant variables.

There have been very few previous investigations into developing stochastic input representations. The
recent work in [1] looks at developing probabilistic models of random coefficients in SPDEs using a maximum
likelihood framework. The random domain decomposition (RDD) method was used in [2–4] to construct
probabilistic models for heterogeneous permeability distributions. This methodology has been shown to work
very well in describing permeability variations in geological strata [2]. Nevertheless, almost all of these tech-
niques for constructing input models are based on the concept of transforming experimental data and statistics
into probability distributions of the property. These techniques are usually highly application specific, require
expert knowledge in assigning probabilities and invariably require some amount of heuristic parameter fitting.

The work introduced in this paper utilizes the available statistical information about the variability of ran-
dom media to construct a set of plausible realizations of the material topology and property. The framework
subsequently encodes these property realizations into a low-dimensional continuous space that represents all
the possible property variations permitted by the experimental data. By sampling over this low-dimensional
equivalent surrogate space, one is essentially sampling over the random space of property variations that sat-
isfy the experimental data. This low-dimensional representation is subsequently used as a stochastic input
model in the uncertainty analysis. The major advantages of this framework are the enormous reduction in
complexity due to the analysis in a low-dimensional space and more importantly the absence of the require-
ment of any expert knowledge. In addition, the generality of the mathematical developments results in a
framework that can construct input models for any property variability, seamlessly meshing with any recon-
struction algorithm and software that produce plausible data sets.

In our earlier work in [5], we developed a linear embedding methodology to model the topological variations
of composite microstructures satisfying some experimentally determined statistical correlations. We were able
to construct a model reduction scheme (based on principle component analysis (PCA)) to convert the large-
dimensional space describing the class of microstructures to a low-dimensional approximation of the space.
The low-dimensional model represents the class of allowable microstructures that satisfy the experimental cor-
relations. This model was utilized as the stochastic input in a stochastic variational multiscale (SVMS) frame-
work. Though this methodology proved to be extremely effective in analyzing the effect of thermal diffusivity
variations in two-phase microstructures, it has the following drawbacks: (1) it cannot be naturally extended to
multi-component materials, (2) the construction of the model requires the solution of computationally exacting
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quadratic and higher-order non-linear equality constraints, and (3) the PCA based model reduction scheme
constructs the closest linear subspace of the high-dimensional input space. The third drawback listed above
is the major motivation towards developing better strategies of constructing reduced-order models. These
model reduction strategies only provide an approximate linear representation of the input space. But most
of the data sets contain essential non-linear structures that are invisible to PCA. Hence, one has to go beyond
a linear representation of the high-dimensional input space to accurately access the effect of its variability on
the output variables.

We extend the concepts developed in [5] into a non-linear dimension reduction strategy to embed data vari-
ations into a low-dimensional manifold that can serve as the input model for subsequent analysis. The major
contributions of the present work are as follows: A completely general methodology to generate viable, real-
istic, reduced-order stochastic input models based on experimental data is proposed. To the best knowledge of
the authors, this is the first time that such a broad framework for generating models for any property variation
has been developed. We provide a rigorous mathematical basis for the proposed framework. Furthermore,
error estimates and strict convergence estimates of the reduced-order model are provided. This methodology
is applied to construct a reduced-order model of thermal property variation of a two-phase microstructure.
The model is subsequently utilized as a stochastic input model to study the effect of material uncertainty
on thermal diffusion. A highly efficient, stochastic collocation based solution strategy is used to solve the cor-
responding SPDE for the evolution of temperature.

The basic model reduction ideas envisioned in this work are not just limited to generation of viable stochas-
tic input models of property variations. This framework has direct applicability to problems where working in
high-dimensional spaces is computationally intractable, for instance, in visualization of property evolution,
extracting process-property maps in low-dimensional spaces, among others. Furthermore, the generation of
a low-dimensional surrogate space has major ramifications in the optimizing of properties, processes and
structures, making complicated operations like searching, contouring and sorting computationally much more
feasible.

The outline of the paper is as follows: In the next section the problem of interest is defined. Following this,
the central idea of the non-linear dimension reduction strategy is described in Section 3. Section 4 lays down
the mathematical foundation of the proposed methodology. This is followed by Section 5 describing the
numerical details of the implementation. An illustrative numerical example is presented in Section 6. We con-
clude in Section 7 with a brief discussion on future avenues of research.

2. Problem definition

The focused application of the developed framework is to analyze transport phenomena in heterogeneous
random media. In this work, we are particularly interested in investigating thermal diffusion in two-phase het-
erogeneous media. In such problems, the topology of the heterogeneous structure (the microstructure) is only
known in terms of a few statistical correlations. Denote this set of statistical correlations by S = {S1, . . . ,Sp}.
Any material structure that satisfies these statistical correlations is a valid realization of the microstructure.
Consequently, the microstructural topology should be considered as a random field (satisfying some statistical
correlations) and the microstructure in any arbitrary specimen as a realization of this field. The thermal dif-
fusivity of the material obviously depends on the topology of the microstructure. We assume that the thermal
diffusivity of the material is uniquely defined by its microstructure (e.g. each point in a realization of a two-
phase medium is assumed to be uniquely occupied by one of the two phases (0 or 1) and that each phase has a
given diffusivity). That is, for a microstructure specified as a distribution of two phases in a domain, the ther-
mal diffusivity distribution is given by simply replacing the phase description (0 or 1) at each point on the
domain by its corresponding thermal diffusivity (a0 or a1). From this simple scaling, for each realization of
the microstructure, we can compute the corresponding realization of the diffusivity, a (a = k/qCp).

Let MS be the space of all microstructures that satisfy the statistical properties S. This is our event space.
Every point in this space is equiprobable. Consequently, we can define a r-algebra G and a corresponding
probability measure P : G ! ½0; 1� to construct a complete probability space ðMS ;G;PÞ of allowable micro-
structures. Corresponding to a microstructure realization x 2MS , we can associate a thermal diffusivity dis-
tribution a(x,x). That is, the thermal diffusivity of the random heterogeneous medium is represented as
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aðxÞ ¼ aðx;xÞ; x 2 D; x 2MS ; ð1Þ

where D � Rnsd is the nsd-dimensional bounded domain that is associated with this medium. The governing
equation for thermal diffusion in this medium can be written as:
ouðx; t;xÞ
ot

¼ r � ½aðx;xÞruðx; t;xÞ� þ f ðx; tÞ; x 2 D; t 2 ½0; T f �;x 2MS ; ð2Þ
where u is the temperature. Here, f is the thermal source/sink and is assumed to be deterministic without loss
of generality.

The solution methodology is to first reduce the complexity of the problem by reducing the probability space
into a finite-dimensional space [6]. In the present case, the random topology satisfies certain statistical corre-
lation functions S = {S1, . . . ,Sp} (from now on referred to as the ‘experimental statistics’). We utilize non-lin-
ear model reduction techniques (see Section 3) to decompose the random topology field into a finite set of
uncorrelated random variables. Upon decomposition and characterization of the random inputs into d ran-
dom variables, ni(x), i = 1, . . . ,d, the solution to the SPDE Eq. (2) can be written as
uðx; t;xÞ ¼ uðx; t; nÞ; n ¼ ðn1; . . . ; ndÞ; ð3Þ

where n is the d-tuple of the random variables. The domain of definition of n is denoted by C. Eq. (2) can now
be written as a (d + nsd)-dimensional problem as follows:
ouðx; t; nÞ
ot

¼ r � ½aðx; nÞruðx; t; nÞ� þ f ðx; tÞ; x 2 D; t 2 ½0; T f �; n 2 C: ð4Þ
For the sake of brevity, we will denote the system of equations consisting of Eq. (4) and appropriate initial and
boundary conditions (here for simplicity assumed to be deterministic) as Bðu : x; t; nÞ ¼ 0.

We utilize a sparse grid collocation framework (based on the Smolyak algorithm) that results in a set of decou-
pled deterministic equations [7]. In this collocation approach, a finite element approximation is used for the spa-
tial domain and the multi-dimensional stochastic space is approximated using interpolating functions. One
computes the deterministic solution at various points in the stochastic space and then builds an interpolated
function that best approximates the required solution [7]. The collocation method collapses the (d + nsd)-dimen-
sional problem to solving M (where, M is the number of collocation points, nk,k = 1, . . . ,M) deterministic prob-
lems in nsd-space dimensions. The q-th order statistics (for q P 1) of the random solution can be obtained
through simple quadrature operations on the interpolated function uðx; nÞ ¼

PM
k¼1uðx; nkÞLkðnÞ (where Lk are

the sparse grid interpolation functions) as:
huqðxÞi ¼
XM

k¼1

uqðx; nkÞ
Z

C
LkðnÞqðnÞdn; ð5Þ
where qðnÞ : C! R is the joint probability distribution function for the set of random variables {n1, . . . ,nd}. In
the following sections, we describe the non-linear model reduction framework for computing a(x,n). Details of
the implementation of the Smolyak algorithm for Eq. (4) can be found in [5].

3. Non-linear model reduction: its necessity and some basic ideas

In our recent work [5], a linear model reduction strategy was developed to convert experimental statistics
into a plausible low-dimensional representation of two-phase microstructures. The first step in that formula-
tion was the conversion of the statistical information into a set of plausible 3D realizations. This feature of
first converting the given experimental statistics into a data set of plausible 3D microstructures is continued
in the developments featured here. This is motivated by the fact that there exists a variety of mature mathe-
matical and numerical techniques that convert experimental data and statistics into multiple plausible 3D
reconstructions of the topology and thus property variations. For instance, the GeoStatistical Modelling
Library [8] (GSLIB) converts experimental statistics of the permeability (semi-variograms, correlations,
etc.) into plausible 3D models of permeability variations. Similarly, there have been various techniques that
have been developed [5,9–12], to convert experimental statistics into a plausible 3D reconstructions of two-
phase composite microstructures as well as polycrystalline materials.
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3.1. Linear model reduction: where does it fail?

As stated in Section 1, the PCA based linear model reduction technique that we had previously formulated
[5] has some drawbacks. The most critical of these is that any PCA based approach can only identify the clos-
est linear subspace to the actual space (which is possibly non-linear) in which the data reside. This directly
translates into the fact that PCA tends to consistently over-estimate the actual dimensionality of the space.
This is illustrated in Fig. 1 which shows a plot of the number of eigenvectors (using PCA) required to represent
80% of the information content of a set of images, as the number of such sample images are increased. Each
image is a 3D two-phase microstructure that satisfies a specific volume fraction and two-point correlation.
Notice that as the number of samples increases, the number of eigenvectors required for a moderately accurate
representation of the data monotonically increases.

The issue brought out in the discussion above can be understood in a more intuitive way by looking at the
simple surface shown in Fig. 2a. The set of points shown in Fig. 2a all lie on a spiral in 3D space. The global
coordinates of any point on the spiral is represented as a 3-tuple. Any PCA based model tries to fit a linear
surface such that the reconstruction error is minimized. This is shown by the green plane which is a 2D rep-
resentation of the data. This clearly results in a bad representation of the original data. On the other hand,
Fig. 1. Plot of the number of samples versus the number of eigenvectors required to represent 80% of the ‘energy’ spectrum contained in
the samples.
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Fig. 2. A set of points lying on a spiral in 3D space. The global coordinates of any point on the spiral is represented as a 3-tuple. The figure
on the left (a) shows the reduced-order model resulting from a linear PCA based reduction. The figure on the right (b) depicts a non-linear
strategy that results in an accurate representation of the 3D spiral (data taken from [13]) that works by ‘‘unravelling and smoothing” the
3D spiral into a 2D sheet.
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knowledge of the geometry of the 3D curve results in representing the global position of any point of the curve
on a 2D plane, which is obtained by unravelling the spiral into a plane (Fig. 2b). This is essentially the intuitive
concept of non-linear model reduction techniques: i.e. they try to unravel and smoothen curves lying in high-
dimensional spaces, so that a low-dimensional representation naturally arises. Thus, while PCA based meth-
ods would require a 3D representation to accurately describe the spiral shown in Fig. 2, a non-linear model
reduction method would identify the geometry of the curve, unravel it and provide a simple 2D representation
of the data.

3.2. Non-linear model reduction: preliminary ideas

The essential idea of non-linear model reduction finds its roots in image compression and related digital
signal processing principles. Fig. 3a shows multiple images of the same object taken at different left-right
and up-down poses. Each image is a 64 � 64 gray-scale picture. Even though each image shown in the figure
is defined using 64 � 64 = 4096 dimensional vector, each image is in fact uniquely parameterized by just two
values, the right-left pose and the up-down pose. It follows that the curve (we will henceforth refer to this
curve as the manifold) representing all possible pictures of this object is embedded in R4096 but is parameter-
ized by a region in R2. The identification of the (small set of) parameters that uniquely define a manifold
embedded in a high-dimensional space is called the ‘manifold learning problem’ [14–16]. This problem of esti-
mating the low-dimensional representation of unordered high-dimensional data sets is a critical problem aris-
ing in studies in vision, speech, motor control and data compression.

Analogous to the problem defined above (using Fig. 3a, we define a problem based on the images in Fig. 3b.
Fig. 3b shows multiple microstructures that satisfy experimentally determined two-point correlation and vol-
ume fraction. Each microstructure is a 65 � 65 � 65 binary image. Each microstructure that satisfies the given
experimental statistics is a point that lies on a curve (manifold) embedded in 65 � 65 � 65 = 274,625 dimen-
sional space. The problem of ‘manifold learning’ or parameter estimation as applied to this situation is as
follows:

Problem statement A: Given a set of N-unordered points belonging to a manifold M embedded in a high-dimen-

sional space Rn, find a low-dimensional region A � Rd that parameterizes M, where d� n. Classical methods in
manifold learning have been methods like the principle component analysis (PCA), Karhunun-Loève expan-
sion (KLE) and multi-dimensional scaling (MDS) [17]. These methods have been shown to extract optimal
mappings when the manifold is embedded linearly or almost linearly in the input space. Recently two new
approaches have been developed that combine the computational advantages of PCA with the ability to extract
the geometric structure of non-linear manifolds. One set of methods preserve the local geometry of the data.
Fig. 3. Figure (a) on the left shows images of the same object (from [13]) taken at various poses (left-right and up-down) while Figure (b)
on the right shows various two-phase microstructures that satisfy a specific volume fraction and two-point correlation.
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They aim to map nearby points on the manifold to nearby points in the low-dimensional representation. Such
methods, locally linear embedding (LLE) [14], Laplacian Eigen Maps, Hessian Eigen maps, essentially con-
struct a homeomorphic mapping between local sets in the manifold to an open ball in a low-dimensional space.
The complete mapping is a union of these local maps. An alternate set of approaches towards non-linear model
reduction take a top-down approach. Such global approaches, like the Isomap and its numerous variants,
attempt to preserve the geometry at all scales [15]. They ensure that nearby points on the manifold (with dis-
tance defined via a suitable metric) map to nearby points in the low-dimensional space and faraway points map
to faraway points in the low-dimensional space. Though both approaches are viable, we focus our attention to
global methods of non-linear dimension reduction. The global approach has been shown to provide a faithful
representation of the global structure of the data. Furthermore, based on our developments, it is possible to
prove tight error bounds and convergence estimates of the model reduction strategy using global methods.
Finally, recent advances in such global approaches have made these strategies computationally very efficient.

The basic premise of the global methods (particularly the Isomap [16] algorithm) is that ‘the geodesic
distances reflect the true low-dimensional geometry of the manifold’. The geodesic distance (between
two-points) on a manifold can be intuitively understood to be the shortest distance between the two-points
along the manifold. Subsequent to the construction of the geodesic distance between the sample points (x)
in the high-dimensional space, the global methods construct the low-dimensional parametrization simply as
a set of points (y) lying in a low-dimensional space that most accurately preserve the geodesic distance. For
example, the Isomap algorithm is an isometric transformation of the high-dimensional data into low-dimen-
sional points. The global based methods solve the following version of the problem statement:

Problem statement B: Given a set of N-unordered points belonging to a manifold M embedded in a high-

dimensional space Rn, find a low-dimensional region A 2 Rd which is isometric to M, with d� n.
The above discussion provides a basic, intuitive picture of the non-linear model reduction strategy. There

are several features–the properties that the manifold satisfies, the notion of distances in the high-dimensional
space, the optimality of the low-dimensional parametrization and the accuracy of this parametrization–that
require a rigorous mathematical footing. We proceed to develop these in the next section.
4. Mathematical formulation

This section is divided into five parts. We first introduce some mathematical preliminaries and define an
appropriate distance function D between two points in MS . For the straightforward construction of a trans-
formation F : MS ! A we ensure that MS is topologically well-behaved, i.e. it is smooth and has no holes.
This can be ensured by showing that MS is compact (Section 4.1). The next step in the construction of the
transformation is the estimation of the pair-wise geodesic distance between all the data points. The geodesic
distance reflects the true geometry of the manifold embedded in the high-dimensional space. We utilize devel-
opments in the graph approximations to geodesics to do the same (Section 4.2). Following this, techniques for
estimating the optimal dimensionality of the reduced-order model are developed (Section 4.3). Section 4.4
details the application of the Isomap algorithm (along with the estimate of the optimal dimensionality from
Section 4.3) to construct the low-dimensional parametrization of the input data. Finally, Section 4.5 details a
non-parametric mapping that serves as the reduced-order, data-driven model of the material topology and
thus thermal diffusivity variation.

4.1. Some definitions and the compactness of the manifold M

We provide a few definitions to make the subsequent presentation clear. Detailed proofs of the lemmas sta-
ted here can be found in Appendix.

Definition 4.1. By a microstructure x, we mean a pixelized representation of a 3D topology. Without loss of
generality, we assume that the number of pixels representing the microstructure is n = q � q � q.

Definition 4.2. Let MS denote the set of microstructures {xi} satisfying a set of statistical correlations
S = {S1, . . . ,Sp}, i.e.
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MS ¼ fx 2 Rnjx satisfies fS1; . . . ; Spgg: ð6Þ

Note that these correlations have an increasing hierarchy of information content. That is, the two-point

correlation contains more information about the material topology and property distribution than, say, the
volume fraction.

Definition 4.3. We denote as ‘upper-correlation function’, Supper, the statistical correlation function which has
a higher-information content than {S1, . . . ,Sp}.For instance, if MS is the set of all microstructures satisfying a
first-order constraint S1 (volume fraction), the upper-correlation function for MS is the two-point correlation
function.

Remark 4.1. In most realistic systems, it is possible to experimentally determine first-order (mean) and second-
order (two-point correlation) statistics fairly easily [18]. Higher-order statistics, though feasible, are expensive
to experimentally determine. Since we are particularly interested in converting these experimental statistics
into viable stochastic models, we will henceforth limit our discussion to the set of two-phase microstructures
that satisfy given first- and second-order statistical correlations. Nevertheless, the developments detailed below
are in no way limited to second-order statistics and in fact can be extended to include higher-order statistics in
a very straightforward manner.

For clarity of presentation, we restrict our analysis to the set of two-phase microstructures satisfying some
volume fraction and two-point correlation. Each microstructure x is represented as a n = q � q � q pixelized
binary image. Each pixel can take values of 0 or 1, representing one of the two phases constituting the two-
phase microstructure. We denote the set of microstructures satisfying the given first- and second-order
statistics S = {S1,S2} by MS2

. The upper-correlation function for MS2
is the three-point correlation function

S3. That is, S3(a,b,c) is the probability of finding three points, forming a triangle with sides a, b, c that all
belong to the same phase. Since the microstructure is discretized/pixelated, a, b, c take integer values. Also,
since the microstructure is finite (defined on q � q � q pixels), the number of such integer sets (a,b,c) is finite.
Using various reconstruction techniques [19,20], it is possible to generate a set of samples xi 2MS2

. The aim
of the present work is to utilize these realizations to construct a low-dimensional model for the set MS2

.

Definition 4.4. The function D : MS2
�MS2

! ½0;1Þ is defined for every x1; x2 2MS2
as
Dðx1; x2Þ ¼ jSupperðx1Þ � Supperðx2Þj: ð7Þ

Based on Remark 4.1, D is defined as
Dðx1; x2Þ ¼
X
ða;b;cÞ
jS3ða; b; cÞðx1Þ � S3ða; b; cÞðx2Þj; ð8Þ
over all possible combinations of a,b,c.

Lemma 4.1. ðMS2
;DÞ is a metric space.

Remark 4.2. Notion of distance and equivalence between two microstructures: The function Dðx1; x2Þ pro-
vides a notion of distance between two microstructures x1; x2 2MS2

. Since x1,x2 belong to MS2
, both have

identical volume fraction, S1 and two-point correlation S2. We naturally denote them as equivalent if they
have the same upper-correlation function, S3. Since we are dealing with statistically reconstructed microstruc-
tures, this definition of equivalence ensures that two microstructures are identical if their higher-order topo-
logical characterization is identical.

Remark 4.3. Any other mapping that satisfies the three properties of a metric [21] can be used as a measure of
equivalence and distance. Since we are dealing with correlation statistics (that inherently result in limited infor-
mation about the topology), using the upper-correlation function is a natural way of utilizing this limited
information towards quantifying the difference between two points (microstructures) in MS2

. An alternate
idea of representing the distance between microstructures is to compute the pixel-wise difference between

the two microstructures, i.e. Dðx1; x2Þ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiPq

i;j;k¼1ðx1ði; j; kÞ � x2ði; j; kÞÞ2
q

.
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Lemma 4.2. The metric space ðMS2
;DÞ is totally bounded.

Lemma 4.3. The metric space ðMS2
;DÞ is dense.

Lemma 4.4. The metric space ðMS2
;DÞ is complete.

Theorem 4.1. The metric space ðMS2
;DÞ is compact.

Proof. Follows from Lemmas 4.2 and 4.4 (see Theorem 45.1 in [22]). h
4.2. Estimating the pair-wise geodesic distances: graph approximations

The Isomap algorithm attempts to find a low-dimensional representation, {yi} of the points {xi} such that
{yi} is isometric to {xi} based on the geodesic distances between the points. It is therefore necessary to com-
pute the pair-wise geodesic distance between all the input data points {xi}.

Definition 4.5. Denote the intrinsic geodesic distance between points in MS2
by DM :DM is defined as
DMðx1; x2Þ ¼ inf
c
flengthðcÞg; ð9Þ
where c varies over the set of smooth arcs connecting x1 and x2. We wish to remind the reader that length of
the arcs in the equation above are defined using the distance metric D.

It is important to appreciate the fact that we start off with no knowledge of the geometry of the manifold.
We are only given N unordered samples {xi} lying in MS2

. Hence, the Definition 4.5 of the geodesic distance is
not particularly useful in numerically computing the distance between two-points. An approximation of the
geodesic distance is required to proceed further. Such an approximation is provided via the concept of graph
distance. We subsequently show that this approximation asymptotically matches the actual geodesic distance
(Eq. (9)) as the number of samples, N, increases (see Theorem 4.2 below).

The unknown geodesic distances in MS2
between the data points are approximated in terms of a graph

distance with respect to a graph G constructed on the data points. This neighborhood graph G is very simple to
construct [16]. Two points share an edge on the graph if they are neighbors. The neighborhood information is
estimated in terms of the distance metric D. x1 and x2 are neighbors if Dðx1; x2Þ ¼ minj¼1;...;N ðDðx1; xjÞÞ. These
neighborhood relations are subsequently represented as a weighted graph G over all the data points. The edges
are given weights corresponding to the distance Dðxi; xjÞ between points.

For points close to each other, the geodesic distance is well approximated by the distance metric D. This is
because the curve can be locally approximated to be a linear patch, and the distance between two points on
this patch is the straight line distance between them. This straight line distance is given by the distance metric
D, which is just the edge length between the points on the graph, G. On the other hand, for points positioned
faraway from each other, the geodesic distance is approximated by adding up a sequence of short hops
between neighboring points [16]. These short hops can be computed easily from the neighborhood graph G.
Denote the shortest path distance between two-points x1 and x2 on the graph G as DG. The key to constructing
the low-dimensional representation is to approximate DM as DG. As the number of input data points increases,
the graph distance approximation approaches the intrinsic geodesic distance. The asymptotic convergence of
the graph distance to the geodesic distance is rigorously stated in Theorem 4.2. This theorem utilizes some
parameters for the quantification of the geometry of the manifold, particularly the minimal radius of
curvature, ro and the minimal branch separation so. For the sake of completeness, we state the theorem below.
For the sake of brevity, we leave out the definitions of these abstract parameters (the interested reader is
referred to [16,22] for discussion of these terms).

Theorem 4.2. Let MS2
be a compact manifold of Rn isometrically equivalent to a convex domain A � Rd . Let

0 < k1,k2 < 1 and 0 < l < 1 be given, and let � > 0 be chosen such that � < so and � 6 2
p ro

ffiffiffiffiffiffiffiffiffi
24k1

p
. A finite sample

set {xi}, i = 1, . . . ,N is chosen randomly from MS2
with a density a, with a >

log V
lgd ðk2�=16Þd

� �
gd ðk2�=8Þd , where V is the volume
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of MS2
and gd is the volume of the unit ball in Rd . The neighborhood graph G is constructed on {xi}. Then, with

probability at least 1 � l, the following inequalities hold for all x, y in MS2
:

ð1� k1ÞDMðx; yÞ 6 DGðx; yÞ 6 ð1þ k2ÞDMðx; yÞ:
Proof. Follows from Theorem B in [23]. h
4.3. Estimating the optimal dimension, d, of the low-dimensional representation

MS2
is intrinsically parameterized by a low-dimensional set A � Rd . As a first step towards constructing A,

the pair-wise geodesic distances, DG, are constructed from the neighborhood graph G. Before we can proceed
further, the intrinsic dimensionality of this low-dimensional space, d has to be estimated.

We draw from the recent work in [24,25], where the intrinsic dimension of an embedded manifold is esti-
mated using a novel geometrical probability approach. This work is based on a powerful result in geometric
probability – the Breadwood–Halton–Hammersley [26] theorem where d is linked to the rate of convergence of
the length functional of the minimal spanning tree of the geodesic distance matrix of the unordered data points
in the high-dimensional space. Consistent estimates of the intrinsic dimension d of the sample set are obtained
using a very simple procedure.

The sequel utilizes concepts from graph theory. We provide some of the essential definitions below. For a
detailed discussion of graphs, trees and related constructs, the interested reader is referred to [27]. Consider a
set of k points (vertices) and a graph defined on this set. A graph consists of two types of elements, namely
vertices and edges. Every edge has two endpoints in the set of vertices, and is said to connect or join the
two endpoints.

� A weighted graph associates a weight (here, this weight is the distance between the vertices) with every edge
in the graph.
� A tree is a graph in which any two vertices are connected by exactly one path.
� A spanning tree of a graph (with k vertices) is a subset of k � 1 edges that form a tree.
� The minimum spanning tree of a weighted graph is a set of edges of minimum total weight which form a

spanning tree of the graph.
Definition 4.6. The geodesic minimal spanning tree (GMST) is the minimal spanning tree of the graph G. The
length functional, L({x}) of the GMST is defined as LðfxgÞ ¼ minT2T G

P
e2T jej, where TG is the set of all

spanning trees of the graph G and e are the edge-weights of the graph. This is in fact, simply the total weight of
the tree.

The mean length of the GMST is linked to the intrinsic dimension d of a manifold MS2
embedded in a high-

dimensional space Rn through the following theorem:

Theorem 4.3. Let MS2
be a smooth d-dimensional manifold embedded in Rn through a map F�1 : Rd !MS2

. Let

2 6 d 6 n. Suppose that {xi},i = 1, . . . ,N are random points in MS2
. Assume that each of the edge lengths jeijjM

computed from the graph G converge to jFðxiÞ � F ðxjÞj2 as N ?1 (i.e. the graph distance converges to the true

manifold distance-This is guaranteed by Theorem 4.2). Then the length functional, L({x}) of the GMST satisfies:
lim
N!1

LðfxgÞ=N ðd
0�1Þ=d 0 ¼

1 if d 0 < d;

bmC if d 0 ¼ d;

0 if d 0 > d;

8><
>: ð10Þ
where bm is a constant, and C is a non-zero function defined in MS2
.

Proof. Follows from Theorem 2 in [28]. h

Theorem 4.3, particularly the asymptotic limit given in Eq. (10) for the length functional of the GMST
provides a means of estimating the intrinsic dimension of the manifold. It is clearly seen that the rate of
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convergence of L({x}) is strongly dependent on d. Following [28], we use this strong rate dependence to
compute d. Defining lN = log(L({x})), gives the following approximation for lN (from Eq. (10))
lN ¼ a logðNÞ þ bþ �N ; ð11Þ

where
a ¼ d � 1

d
; ð12Þ

b ¼ logðbmCÞ; ð13Þ
and �N is an error residual that goes to zero as N ?1 [24,25,28]. The intrinsic dimensionality, d can be esti-
mated by finding the length functional for different number of samples N and subsequently finding the best fit
for (a,b) in Eq. (11).
4.4. Constructing the low-dimensional parametrization, A

Section 4.2 presented the construction of the geodesic distance between all pairs of input points, while Sec-
tion 4.3 provided an estimation of the dimensionality, d, of the low-dimensional representation. Denote as M,
the pair-wise distance matrix (based on the geodesic distance), with elements dij ¼ DGðxi; xjÞ where i,
j = 1, . . . ,N. Multi-dimensional scaling [17,29] (MDS) arguments are used to compute the set of low-dimen-
sional points that are isometric to these high-dimensional images. The objective of MDS is: Given a matrix,

M, of pair-wise distances between N (high-dimensional) points, find a configuration of points in a low-dimensional

space such that the coordinates of these N points yield a Euclidean distance matrix whose elements are identical to

the elements of the given distance matrix M.
Given M; find fy ig; i ¼ 1; . . . ;N such that yi 2 Rd
andXd

k¼1

ðyik � yjkÞ
2 ¼ d2

ij; for all i; j: ð14Þ
This is called ‘coordinate recovery or parametrization’: finding a set of points given only the pair-wise distance
between the points.

Define the N � N symmetric matrix A with elements Aij ¼ � 1
2
d2

ij. Define the N � N centering matrix
[17,29], H ¼ I� 1

N 110 with elements hij = dij � 1/N. Define the N � d matrix of points Y = (y1, . . . ,yN)T.
Assume without loss of generality that the centroid of the set of points is the origin

PN
i¼1yi ¼ 0

� �
. Define

the N � N matrix B whose components are the scalar products yT
i � yj.
bij ¼
Xd

k¼1

yikyjk ¼ y
T
i � yj: ð15Þ
The problem at hand is to estimate the coordinates yi, given M. We relate these points {yi} to B. B in turn can
be represented in terms of the known distances M = {dij}. It can easily be shown that [17,29]
B ¼ HAH: ð16Þ

B is a positive definite matrix that can be decomposed as follows [29]:
B ¼ CKC: ð17Þ

Here, K = diag(k1, . . . ,kN) is the diagonal matrix of the positive eigenvalues of B and C = (c1, . . . ,cN)T the ma-
trix of the corresponding eigenvectors. Note that B will have a decaying eigen-spectrum. The required set of
points y1, . . . ,yN is related to the d largest eigenvalues/eigenvectors of B. B is by definition (see Eq. (15), the
scalar product matrix)
B ¼ YYT: ð18Þ
From Eq. (17) and (18), an estimate of Y in terms of the largest d eigenvectors of B follows: Y ¼ CdK
1
2
d , where

Kd is the diagonal (d � d) matrix of the largest d eigenvalues of B and Cd is the N � d matrix of the correspond-
ing eigenvectors.
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The knowledge of the optimal dimensionality, d, (from Section 4.3) is quite useful in truncating the eigen
values of the N � N matrix B. In contrast, classical PCA techniques truncate the expansion based on repre-
senting some percentage of the eigen-spectrum i.e. choose the largest d eigenvalues that account for, say,

95% of the eigen-spectrum
Pd

i¼1ki=
PN

i¼1ki > 0:95
� �

.

We have converted a finite set of data points {xi}, i = 1, . . . ,N from MS2
� Rn to points {yi},i = 1, . . . ,N in

Rd . These points belong to a connected convex subset A � Rd (Theorem 4.2). This convex region can be
numerically estimated as the convex hull of the set of points {yi},i = 1, . . . ,N. Hence the low-dimensional
parametrization of MS2

is given by
A ¼ fn 2 Rd jn 2 ConvexHull ðfy 1; . . . ;yNgÞg: ð19Þ
The stochastic collocation procedure for the solution of SPDEs involves computing the solution at various
sample points, n, from this space, A.

4.5. Construction of a non-parametric mapping F�1 : A!MS2

Given a set of samples {xi}, i = 1, . . . ,N in MS2
, the non-linear dimension reduction strategy (Section 4.2)

coupled with the dimension estimation method (Section 4.3) convert these points into a set of points {yi},
i = 1, . . . ,N belonging to a convex set A. This convex region A � Rd , defines the reduced representation of

the space of microstructures, MS2
, satisfying the given statistical correlations S2:A can be considered to be a

surrogate space to MS2
. One can access the complete variability in the topology and property distribution

of microstructures in MS2
by simply sampling over the region A. In the collocation based solution strategy

for solving SPDEs, one constructs the statistics of the dependant variable by sampling over a discrete set
of microstructures. Since we propose to utilize A as a reduced representation of MS2

, we sample over a dis-
crete set of points n 2 A instead. But we have no knowledge of the image of a random point n 2 A in the
microstructural space MS2

(we only know that the points {yi} for i = 1, . . . ,N map to the microstructures
{xi} for i = 1, . . . ,N). For a usable reduced-order model of the microstructure space, an explicit mapping F�1

from A to MS2
has to be constructed.

There are numerous ways of constructing parametric as well as non-parametric mappings between two sets
of objects. For instance, neural networks can be trained using the sample points ({yi}, {xi}), i = 1, . . . ,N to
construct a non-parametric mapping F�1. There have been recent reports of variants of the Isomap algorithm
that along with constructing the reduced-order representation of the samples also construct an explicit map-
ping between the two sets [30]. But there are two significant issues that have to be considered when one utilizes
such mapping strategies: (1) Most of these explicit mapping strategies are essentially some form of interpola-
tion rule that utilize the sample set of values ({y},{x}). One has to make sure that the interpolated result,
xðx ¼ F�1ðnÞÞ for some arbitrary point n 2 A actually belongs to MS2

. (2) Care must be taken to formulate
the explicit mapping in a way that results in a computationally simple methodology of finding the images of
points. This is very significant considering the fact that we will potentially deal with very large pixel sized
images (pixelized microstructures or property maps) with pixel counts of the order of 128 � 128 � 128.
Any strategy that involves performing non-trivial operations on large data sets of (high resolution) property
maps would make the complete process very inefficient. We propose several strategies of constructing compu-
tationally simple mappings between the two spaces MS2

and A keeping in mind the issues raised above.

4.5.1. Method 1: nearest neighbor map

This is the simplest map (illustrated schematically in Fig. 4) that sets the image of an arbitrary point in the
region A to the image of the nearest sampled point. The nearest point is the point that is the smallest Euclid-
ean distance from the given arbitrary point. This method is particularly useful when the sampling density (a as
defined in Theorem 4.5) is large, i.e. this method results in a reliable mapping when the number of microstruc-
ture samples {xi}, i = 1, . . . ,N is large.

It is simple to construct error estimates for this mapping. Given an arbitrary point n 2 A, approximating it

by its closest neighbor results in an error, eA, given by eA ¼ mini¼1;...;N

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiPd
k¼1ðnk � yikÞ

2
q

. From isometry, the



Fig. 4. The figure above illustrates the simplest possible mapping between the low-dimensional region A and the high-dimensional
microstructural space MS2

. Given an arbitrary point n 2 A, find the point yk closest to n from the sampled points {yi},i = 1, . . . ,N. Assign
the image value of yk i.e. xk to the image of n.
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error between the actual image and the mapped image is given by e ¼ eA. This error can be made arbitrarily
small by increasing N.

4.5.2. Method 2: local linear interpolation

A simple non-parametric mapping based on the k-nearest neighbors of a point is defined (Fig. 5) as follows:
Given any point n 2 A, find the k-nearest neighbors, ŷi; i ¼ 1; . . . ; k (k defined a priori) to n from the set {yi}.

Compute the (Euclidean) distance li ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiPd

p¼1ðnp � ŷipÞ2
q

of n from ŷi i = 1, . . . ,k. The point n can be repre-

sented as a weighted sum of its k-nearest neighbors as
Fig. 5.
dimen
n ¼
Pk

i¼1
ŷi
liPk

i¼1
1
li

: ð20Þ
Utilizing the fact that the isometric embedding that generated the points yi from xi conserves distances, the
image of n is then given by
x ¼
Pk

i¼1
x̂i
liPk

i¼1
1
li

: ð21Þ
That is, the image of n is the weighted sum of the images of the k-nearest neighbors of n (where the nearest
neighbors are taken from the N-sampled points).

The linear interpolation procedure is based on the principle that a small region in a highly curved manifold can
be well approximated as a linear patch. This is in fact one of the central concepts that result in local strategies of
non-linear dimension reduction [14,15] (see Section 3 for a discussion of global versus local strategies of non-lin-
ear dimension reduction). This linear patch is constructed using the k-nearest neighbors of a point n. As the sam-
pling density (the number of sample points, N) used to perform the non-linear dimension reduction increases, the
mean radius of the k-neighborhood of a point approaches zero ðlimN!1maxi¼1;...;kkn� ŷik2 ! 0Þ, ensuring that
the linear patch represents the actual curved manifold arbitrarily well.
The figure above illustrates a local linear (k-neighbor) interpolation mapping between the low-dimensional region A and the high-
sional microstructural space MS2

.
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It is possible to estimate approximate error bounds by computing the local curvature of the manifold.
Denote by x, the image of the point n. As before, let the k-nearest neighbors of n be ŷi and their corresponding
images in MS2

be x̂i. The local curvature of the manifold in the neighborhood of x can be approximated from
the geodesic distances between the points. Let r denote the radius of curvature of the manifold at x. The error
in the interpolation based representation is caused by considering the space to be locally linear, when it is

curved (see Fig. 6). This error is approximated from simple geometry as e ¼ maxi¼1;...;kðr �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
r2 � l2

i

q
Þ.

4.5.3. Method 3: local linear interpolation with projection

The local linear interpolation method (Method 2) can be made exact by simply projecting the image
obtained after interpolation onto the manifold (shown schematically in Fig. 7). This ensures that the image
lies on the manifold MS2

.
The projection is numerically computed as follows: Denote the microstructure obtained after the interpo-

lation step as x. The locally linear interpolation provides a good approximation of the exact image, x 	 xexact,
where xexact is that microstructure on MS2

whose geodesic distances from each of the k microstructures
x̂i; i ¼ 1; . . . ; k is li. The errors in this approximation are due to the fact that the approximation x does not
usually lie on the manifold (as seen in Fig. 7). That is, x does not satisfy the statistical correlations
S = {S1, . . . ,Sp} that all points on the manifold satisfy.

The projection operation essentially modifies the point x to satisfy these correlations. This can be achieved
computationally by performing a stochastic optimization problem starting from x [11,18,31]. Since x is very
close to xexact, these algorithms are guaranteed to reach the local minima defined by xexact. In the context of the
numerical examples presented in this work, using two-phase microstructures (see Section 6), the stochastic
optimization is done as follows: Starting from the approximate microstructure x, compute the volume fraction
and two-point correlation of this image. Change the pixel values of t sites in this microstructure such that the
volume fraction matches the experimental volume fraction. Following this, randomly swap pixel values in the
microstructure (accepting a move only if the error in the two-point correlation decreases), until the two-point
correlation matches the experimental value. This can be considered as a version of simulated annealing, with
the starting point, x being close to the optimal point, xexact.

One question that arises from this mapping strategy is the following: The initial goal of the mapping was to
construct a microstructure (lying on the manifold) that was a distance (geodesically) li from x̂i. The interpo-
lation step ensures this distance (but the microstructure does not lie on the manifold). How much deviation
Fig. 6. Simple estimate for the interpolation error in Method 2: Let r denote the local radius of curvature of the function near the point
xexact (the filled square). We approximate the curve by a linear patch, resulting in some error. This error is the distance between the
approximate linear image, x (the unfilled square) and the actual point, xexact (the filled square). This distance can be approximated from
simple geometry as a function of r and the local geodesic distance between the points.

Fig. 7. The local linear interpolation method can be made exact by simply projecting the image obtained after interpolation onto the
manifold. This is illustrated in the figure above, where the botted blue line represents the linear interpolation and the curved line represents
the projection operator that constructs the image lying on the manifold.



Fig. 8. Sample illustration of the projection step: The figure on the left is a microstructure after interpolation. Projecting it onto the
manifold yields the microstructure on the right. There is negligible change in the three point correlation between the micorstructures.
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from this distance does the projection operator cause? By swapping the pixels in the microstructure during the
stochastic optimization step, the three-point correlation is being changed (which is a measure of distance). But
in all of our numerical experiments, this optimization converged within 1000 such pixel flips, thus negligibly
affecting the three-point correlation (since the three-point correlation is computed by sampling over
65 � 65 � 65 
 300,000 points, changing 0.3% of the pixels is negligibly small). This is illustrated pictorially
using a sample example shown in Fig. 8. The number of neighbors used for the local linear interpolation
map is k = 10.

In all three methods detailed above, we only utilize the given input data {xi} to construct the mapping for
an arbitrary point n 2 A. The mapped microstructure, F�1ðnÞ is constructed solely based on the available
input microstructures and not based on direct reconstruction from moments. In the case of the projection
operation used in method 3, the mapped microstructure is moved onto the manifold MS2

. This operation
changes less that 0.3% of the microstructure having negligible effect on the thermal behavior of the
microstructure.

In potential applications where such projection techniques are infeasible, there are two possible solution
strategies that can be pursued: one can use an alternate definition of the distance between the images (see
Remark 4.3) or one can utilize more computationally demanding reconstruction [19] or training frameworks
[30] to construct the mapping F�1 : A!MS2

.

4.6. The low-dimensional stochastic input model F�1 : A!MS2

A represents the space of d-tuples n = (n1, . . . ,nd) that map to microstructures that satisfy the statistical
properties S = {S1, . . . ,Sp}.

Remark 4.4. In our theoretical derivations in this section, we have ensured that A is indeed a convex,
connected and compact region of Rd . Hence, starting from a large set of points {yi},i = 1, . . . ,N in A, one can
represent the complete region A as the convex hull of the points {yi}, i = 1, . . . ,N. Each of the microstructures
in MS2

(by definition) satisfies all required statistical properties, therefore they are equally probable to occur.
That is, every point in the manifold MS2

is equiprobable. This observation provides a way to construct the
stochastic model for the allowable microstructures. Define the stochastic model for the topology variation as
F�1ðnÞ : A! MS2

where n = (n1, . . . ,nd) is a uniform random variable chosen from A. This low-dimensional
stochastic model F�1 for the microstructure is the stochastic input in the SPDE (Eq. (4)) defining the diffusion
problem.
5. Numerical implementation

This section contains recipes for the numerical implementation of the theoretical developments detailed in
the previous sections. We divide this section into various subsections that sequentially discuss the data-driven
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strategy, starting with the generation of the samples given some limited microstructural information (Section
5.1), the algorithm for constructing the low-dimensional region A (Section 5.2) and the Smolyak algorithm for
the solution of the SPDEs (Section 5.3).

5.1. Microstructure reconstruction: creating the samples xi

Given some experimentally determined statistical correlation functions of the microstructure, the goal is to
reconstruct a large set of microstructures satisfying these correlation functions. This is the first step towards
building a reduced-order model to the microstructural space. In this work, the microstructure is considered to
be a level cut of a Gaussian Random Field (GRF). The statistical correlations are enforced during the recon-
struction of the GRF using the given information [32–34]. With this method, a set of N 3D models of the prop-
erty variations can be generated.

5.2. Constructing the low-dimensional region A

The reconstruction procedure results in a large set of random samples xi from the space MS2
. The following

steps are followed to compute the corresponding points {yi}.

Step 1: Find the pair-wise distances, P between the N samples xi,i = 1, . . . ,N. This is done by first defining an
appropriate distance metric, D between the microstructures. In the example (Section 6) using two-
phase microstructure, we define the distance between two microstructures as the difference between
their three-point correlations. This operation is obviously of O(N2) complexity.

Step 2: Construct the neighborhood graph, G, of this sample set. That is, determine which points are
neighbors on the manifold based on the distance P(i, j). Find the nearest k-neighbors of each point.
This is performed using a sorting algorithm (O(NlogN) complexity). Connect these points on
the graph G and set the edge lengths equal to P(i, j). The total complexity of this operation is
O(N2logN).
for i=1:N

[z,I]=sort (P(i,:)), z are the sorted distances

and I are the corresponding indices

G (1:k,i)=I(2:k+1)
Step 3: Estimate the geodesic distance M(i, j) between all pairs of points on the manifold. This can be done by
computing the shortest path distances in the graph G. There are several algorithms to compute the
shortest path on a graph. In our implementation, we utilize Floyd’s algorithm to compute M(i, j).
The complexity of this step is O(N3).
Initialize M(i, j) as
M(i, j) = P(i, j) if i,j are neighbors or M(i, j) =1 otherwise

for k = 1:N

for each pair (i,j) in 1:N

M(i, j)= min (M(i, j), M(i,k)+M(k, j))
Step 4: Decide on the optimal dimensionality, d, of the low-dimensional space A. Using the graph G [28], esti-
mate the average geodesic MST length. This is done as shown below:



Choose Q integers p = p1, . . .,pQ between 1 and N
Randomly pick p samples from the N available samples

Compute the length of the MST of these samples, L(p)
Find the best least squares fit value of a for

L(p) = a log(p) + �p

d ¼ round
1�a
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We utilize the code in [35] to compute the length functional of the MST. The complexity of this step is
O(N logN).
The optimal dimension d is
1

� �
Step 5: Construct the d-dimensional embedding using MDS.
Using M compute A: Aij ¼ � 1
2
M2

ij

Compute B = HAH

Compute the eigenvalues of B: B = CKC

Define Y ¼ CK
1
2

The low-dimensional mapping of the input sample points is given by the first d components of Y. That
is, yik = Y(k,i) for i = 1, . . . ,N and k = 1, . . . ,d. The complexity of this step is O(nN2), where n is the
pixel count in each image. Here, n = p � p � p 
 1283. For number of samples N� n, MDS is com-
putationally more feasible than PCA, which has a complexity of O(n2N).
Step 6: Following Remark 4.4, the low-dimensional region A that maps to the high-dimensional microstruc-
tural space MS is given by the convex hull of the set of low-dimensional points {y1, . . . ,yN}. We utilize
the Qhull program [36] to compute the convex hull of multi-dimensional data sets.
A ¼ convex hullðfy1; . . . ;yNgÞ
5.3. Utilizing this reduced-order representation: Stochastic collocation

The above generated d-dimensional embedding is utilized as an input stochastic model for the solution of
SPDEs. We utilize a sparse grid collocation strategy for constructing the stochastic solution [7]. The method
essentially solves the problem at various points n on the stochastic space and constructs an interpolation based
approximation to the stochastic solution. The sparse grid collocation strategy used utilizes piecewise multi-lin-
ear hierarchical basis functions as interpolation functions [7]. For a given set of stochastic collocation points
ni, i = 1, . . . ,M, from A, we find the corresponding images of these points (using the procedures detailed in
Section 4.5) xi ¼ F�1ðniÞ. These microstructural images are utilized as inputs (property maps) in the solution
of the SPDEs.

Remark 5.1. In the stochastic collocation approach, the collocation points are usually given in the unit
hypercube, i.e. p 2 [0,1]d. As a first step, this point p must be mapped to a corresponding point n 2 A.
for i = 1: M
Determine the collocation point pi 2 [0, 1]d

Compute the point ni 2 A
Compute xi ¼ F�1ðniÞ
Solve the PDE using xi as input
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6. Illustrative example

In this section, we showcase the theoretical developments detailed in the previous sections with a realistic
example.

6.1. Two-phase microstructures

The non-linear dimension reduction strategy is applied to construct a reduced-order model for the distri-
bution of material in a two-phase metal–metal composite. The problem of interest is as follows:

Compute the PDFs of temperature evolution in a metal–metal composite microstructure when only limited sta-

tistics of the material distribution is known.

This topological uncertainty translates to uncertainties in the thermal diffusivity a(x) of the microstructure.
For clarity of presentation, we divide the solution into multiple sections. (1) The first step is the extraction of
topological statistics from the experimental image provided. These statistics are then utilized to reconstruct a
large set of 3D microstructures {xi}, i = 1, . . . ,N. (2) The next step is to construct the low-dimensional repre-
sentation of the class of microstructures utilizing the samples {xi}, i = 1, . . . ,N in the input space. (3) The final
step is to utilize the reduced-order representation of the microstructural topology (and hence, the thermal dif-
fusivity coefficient) as an input stochastic model to solve for the evolution of the temperature statistics.

6.1.1. Data extraction and sample set construction
We start from a given experimental image of a microstructure. The image (204 lm � 236 lm), shown in

Fig. 9, is of a Tungstan–Silver composite [37]. This is a well characterized system, which has been used to test
various reconstruction procedures [20,38]. The first step is to extract the necessary statistical information from
the experimental image. The image is cropped, deblurred and discretized. The volume fraction of silver is
p = 0.2. The experimental two-point correlation is extracted from the image. The normalized two-point cor-
relation ðgðrÞ ¼ L2ðrÞ�p2

p�p2 Þ, is shown in Fig. 10. The data extraction was performed in Matlab.
The next step is to utilize these extracted statistical relations (volume fraction and two-point correlation) to

reconstruct a class of 3D microstructures. We utilize a statistics based reconstruction procedure based on
Gaussian Random Fields (GRF). In this method, the 3D microstructure is obtained as the level cuts to a ran-
dom field, u(x), x 2 D. The random field has a field–field correlation hu(0)u(r)i = c(r). The statistics of the
reconstructed 3D image can be matched to the experimental image by suitably modifying the field–field cor-
relation function and the level cut values (see [20] for a detailed discussion). Following the work in [20], the
GRF is assumed to satisfy a specified field–field correlation given by
cðrÞ ¼ e�r=b � ðrc=bÞe�r=rc

1� ðrc=bÞ
sinð2pr=dÞ

2pr=d
; ð22Þ
Fig. 9. Experimental image of a two-phase composite (from [37]).
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where the field is characterized by the correlation length b, a domain scale d and a cutoff scale rc. For a specific
choice of (b,d, rc), one can construct a microstructure from the resulting GRF. The (theoretical) two-point cor-
relations corresponding to this reconstructed microstructures is computed. Optimal values of (b,d, rc) are ob-
tained by minimizing the error between the theoretical two-point correlation and the experimental two-point
correlation. The theoretical two-point correlation corresponding to (b,d, rc) = (2.229,12.457,2.302) lm is plot-
ted in Fig. 11.

Using the optimal parameters of the GRF (to match with the experimental data), realizations of 3D micro-
structure were computed. Each microstructure consisted of 65 � 65 � 65 pixels. This corresponds to a size of
20 lm � 20 lm � 20 lm. One realization of the 3D microstructure reconstructed using the GRF is shown in
Fig. 12.

6.1.2. Non-linear dimension reduction and construction of the topological model

The GRF based reconstruction detailed above was used to generate a set of N = 1000 samples of two-phase
microstructure. Each microstructure is represented as a 65 � 65 � 65 pixel image. The three-point correlations
of all these samples are calculated. The three-point correlation is easily computed as follows: for a given value
of (a,b,c), randomly place triangles of side lengths a, b, c on the microstructure. Count the number of times all
three vertices of the triangle lie on the same phase. S3(a,b,c) is the ratio of the number of such successful place-
ments over the total number of tries. In our computations, we randomly place 500,000 triangles to compute S3

for each value of (a,b,c). The total computational time to reconstruct 1000 microstructures along with their S3

was 30 min on 25 nodes of our in-house Linux cluster.
Based on the calculated S3, the pair-wise distance matrix P is computed. This took 6 min to compute on a

3.8 GHz PC. From this, the geodesic distance matrix M and the graph G are computed. These are used to
estimate the optimal dimensionality of the low-dimensional space by computing the length functional of
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Fig. 11. Comparison of the two-point correlation function from experiments and from the GRF.



Fig. 12. One instance (realization) of the two-phase microstructure.
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the MST of the graph G. The Matlab code available at [35] was utilized. Fig. 13 plots the length functional of
the MST of the graph G for various sample sizes. The optimal dimensionality of the low-dimensional set is
related to the slope of this line (see Eq. (11)). The slope of the curve is computed using a simple least squares
fit. The optimal dimensionality was estimated to be d = 9 (a 
 0.885). The total computational time to esti-
mate the dimensionality was 8 min on a 3.8 GHz PC.

Multi-dimensional scaling is performed using the geodesic distance matrix M. The nine largest eigenvalues
and their corresponding eigenvectors are used to represent the input samples. The low-dimensional region A is
constructed as the convex hull of these N(=1000) nine-dimensional points ni. This region coupled with the
mappings developed in Section 4.5 define the reduced-order stochastic input model F�1 : A!MS2

.
Fig. 14 illustrates the potential difficulty in choosing the dimensionality of the region A based on simple

variance errors (i.e. choose the value of d that accounts for 90% of the variance in the data). Fig. 14a plots
the eigenspectrum of the computed eigenvalues of Bð

Pd
i¼1ki=

PN
i¼1kiÞ. All dimensionalities beyond d = 4

account for over 90% of the variance in the data. Hence, there arises some ambiguity in simply choosing
the dimensionality of the reduced mode based on this plot. Fig. 14b plots the residual variance of the low-
dimensional representation for various dimensionalities. The residual variance measures the difference
between the intrinsic manifold distance matrix, M and the pair-wise Euclidian matrix, DA, recovered from
MDS (see Eq. (14)) for various dimensionalities d. It is defined in terms of the element-wise correlation
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Fig. 13. Plot of the length functional of the MST of the graph G for various sample sizes.
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between the two matrices, e ¼ 1� r2ðDA;MÞ, where r here is the standard linear correlation coefficient [39].
Notice that all the dimensions above d = 8 have fairly small variance, with d = 14 having the minimum. This
ambiguity in choosing the dimensionality of the low-dimensional representation is overcome by using the ideas
discussed in Section 4.3, resulting in an optimal dimensionality of d = 9.

6.1.3. Utilizing the model to solve a stochastic PDE: diffusion in random heterogeneous media

The procedure detailed above results in the function F�1. F�1 is a mapping from a nine-dimensional space
A to the space of microstructures MS2

. F�1 along with n 2 A serve as the stochastic input for the diffusion
equation. A simple diffusion problem is considered (Eq. (4)). A computational domain of 65 � 65 � 65 is con-
sidered (this corresponds to a physical domain of 20 lm � 20 lm � 20 lm). The random heterogeneous
microstructure is constructed as a 65 � 65 � 65 pixel image. The steady-state temperature profile, when a con-
stant temperature of 0.5 is maintained on the left wall and a constant temperature of �0.5 is maintained on the
right wall, is evaluated. All the other walls are thermally insulated. The axis along which the temperature
boundary conditions are imposed is denoted as the x-axis (left-right) while the vertical axis is the z-axis.

The construction of the stochastic solution is through sparse grid collocation strategies (Smolyak algo-
rithm). A level 5 interpolation scheme is used to compute the stochastic solution in nine dimensions. The sto-
chastic problem was reduced to the solution of 26,017 deterministic decoupled equations. Fifty nodes (each
with two 3.8G CPUs) of our 64-node Linux cluster were utilized to solve these deterministic equations. These
are dual core processors with hyper-threading capabilities thus each node was used to perform the computa-
tion for four such problems. The total computational time was about 210 min . Each deterministic problem
involved the solution of a diffusion problem on a given microstructure using an 64 � 64 � 64 element grid
(uniform hexahedral elements).

The reduction in the interpolation error with increasing depth of interpolation is shown in Fig. 15. The
interpolation error is defined as the variation of the interpolated value of the function from the actual function
value ju � I(u)j. This is measured in terms of the hierarchical surpluses, wi (here taken as the sum of the abso-
lute value of the hierarchical surpluses in all stochastic dimensions), where i is the depth of interpolation [7].
Define the error as e ¼ maxj¼1:nnoðwiÞ, where nno is the number of nodes in the finite element discretization of
the spatial domain, D. As the level of interpolation increases, the number of sampling points used to construct
the stochastic solution increases [7]. Notice that there is a slight jump in the error going from an interpolation
of depth 2 to depth 3. This is probably due to the presence of some highly localized fluctuations of the sto-
chastic solution that is captured only when the depth of interpolation reaches 3. Nevertheless, the error reduc-
tion shown above follows the theoretical convergence estimates for using Smolyak based interpolation [7].
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The mean temperature is shown in Fig. 16. The figure plots iso-surfaces of temperatures �0.25 (Fig. 16b),
0.0 (Fig. 16c) and 0.25 (Fig. 16d). The figure also shows temperature slices at three different locations of the xz

plane: y = 0 (Fig. 16e), y = 8 lm (Fig. 16f) and y = 16 lm (Fig. 16(g)).
The standard deviation and other higher-order statistics of the temperature variation are shown in Fig. 17.

Fig. 17a plots standard deviation iso-surfaces. Fig. 17d–f plot slices of the temperature deviation at three dif-
ferent planes y = 0,y = 8 lm,y = 16 lm, respectively. The standard deviation reaches 48% of the maximum
temperature difference maintained. A point from a region of high-standard deviation (A = (4, 4,20) lm) is
chosen and the PDF of temperature at this point is determined. Fig. 17c plots the PDF for the point.
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We conclude this section by making a few observations. The physical features of the topology variation will
have an effect on the low-dimensional model. If the correlation length (of the two-point correlation) decreases,
the optimal dimensionality of the model will increase and vice versa. The model reduction strategy developed
is data-driven: the transformation only converts the given finite input data set into a set of low-dimensional
points. In case the input data, {xi} all belong to a localized region of MS2

, the model reduction strategy frame-
work will construct a low-dimensional parametrization of only this localized region. By increasing the amount
of data utilized (i.e. N), one can make sure that the complete space, MS2

is sampled, ensuring that the data-
driven model reflects the variability in the complete space.
7. Conclusions

A non-linear model reduction technique for converting experimentally determined statistics into viable,
realistic stochastic input models of property variability has been developed in the present work. The major
advantages of the proposed developments are: it seamlessly meshes with any reconstruction method, directly
converts samples into an equiprobable low-order model of the property, and is applicable to any property var-
iation (for instance, property variation in polycrystalline materials, permeability variation in heterogeneous
porous media, etc.).

The current developments borrow generously from ideas in image processing and psychology where the
problem of manifold learning is frequently encountered. Ideas from differential geometry are employed to
show the accuracy and asymptotic convergence of the reduced-order model. We showcase the framework
developed to construct a realistic reduced-order stochastic model that describes the material and property var-
iation in a two-phase microstructure (starting from an experimental image of the microstructure). We utilize
this stochastic model as an input in the solution of a SPDE governing diffusion in random heterogeneous
media. The solution provides an understanding of how uncertainty in the topology of the microstructure
affects the evolution of a dependant variable (temperature).
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The basic model reduction ideas envisioned in this work are not limited to generation of viable stochastic
input models of property variations. This framework has direct applicability to problems where working in
high-dimensional spaces is computationally intractable, for instance, in visualization of property evolution,
extracting process-property maps in low-dimensional spaces, among others. Furthermore, the generation of
a low-dimensional surrogate space has major ramifications in the optimizing of properties-processes and struc-
tures, making complicated operations like searching, contouring and sorting computationally much more fea-
sible. These potentially exciting areas of application of the non-linear model reduction framework developed
here offer fertile avenues of further research.

Different reduction techniques (for instance, locally linear embedding, kernel PCA, self organizing maps)
can be incorporated into the general model reduction strategy formulated here. This is an area that is unex-
plored and could potentially result in very efficient, real time, data-driven, stochastic reduced-order model gen-
eration techniques. In addition to the importance of such models in process modeling of heterogeneous
materials (polycrystals, composites, concrete, etc.), many other technological applications in modeling multi-
scale thermal/flow transport in geological media, soil contamination and reservoir engineering remain to be
explored.
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Appendix. Properties of the manifold
Lemma 4.1. ðMS2
;DÞ is a metric space.

Proof. For a function D to be a metric defined over the set MS2
, it must satisfy the properties of non-nega-

tivity, symmetry and the triangle inequality [21].
1. Positive definiteness: S3(a,b,c)(x) is a non-negative, continuous function. For any x; y 2MS2
Dðx; yÞP 0

follows from jS3(a,b,c)(x) � S3(a,b,c)(y)jP 0. Also, Dðx; xÞ ¼ 0, by definition.
2. Symmetry: Dðx; yÞ ¼ Dðy; xÞ from the definition of D.
3. Triangle inequality: for any x; y; z 2MS2

Dðx; yÞ ¼
P
jS3ða; b; cÞðxÞ � S3ða; b; cÞðyÞj ¼

P
jS3ða; b; cÞ

ðxÞ � S3ða; b; cÞðzÞ þ S3ða; b; cÞðzÞ � S3ða; b; cÞyÞj 6
P
jS3ða; b; cÞðxÞ � S3ða; b; cÞðzÞj þ

P
jS3ða; b; cÞðzÞ�

S3ða; b; cÞðyÞjdr ¼ Dðx; zÞ þ Dðz; yÞ. h
Lemma 4.2. The metric space ðMS2
;DÞ is totally bounded

Proof. A metric space is bounded iff
9rd 2 Rþsuch that Dðx; yÞ 6 rd ; 8x; y 2MS2
:

For each (a,b,c),S3(a,b,c)(x) denotes the probability of a randomly placed triangle with sides (a,b,c) having
its three vertices belong to the same phase. It follows that 0 6 S3(a,b,c)(x) 6 1. Now, for any x; y 2MS2
Dðx; yÞ ¼
X
ða;b;cÞ
jS3ða; b; cÞðxÞ � S3ða; b; cÞðyÞj 6

X
ða;b;cÞ
jS3ða; b; cÞðxÞj þ

X
ða;b;cÞ
jS3ða; b; cÞðyÞj

6 2�max
X
ða;b;cÞ
jS3ða; b; cÞðxÞj;

X
ða;b;cÞ
jS3ða; b; cÞðyÞj

( )
6 2

X
ða;b;cÞ

1 ¼ rd :
Hence, we have shown that the metric space ðMS2
;DÞ is bounded. rd is an upper bound of the ‘diameter’ of the

metric space. h
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We can define a volume corresponding to this diameter, i.e ðMS2
;DÞ can be inscribed into a n-ball (n-

dimensional sphere) of diameter rd. Denote this volume as V ðMS2
Þ:V ðMS2

Þ is given by the volume of the n-
ball with radius rd=2; V ðMS2

Þ ¼ ðpn=2ðrd=2ÞnÞ=Cð1þ n=2Þ, where C(1 + n/2) is the Gamma function [40].
Now, given any � > 0, one can cover MS2

by a finite number of �-balls (i.e. n-balls of radius �). An estimate on
the number of such balls required is given by

rn
d
�n. Hence, the metric space ðMS2

;DÞ is totally bounded.

Lemma 4.3. The metric space ðMS2
;DÞ is dense.

Proof. A metric space is dense iff
Given d > 0; for any x 2MS2
;

9 at least one y 2MS2
such that Dðx; yÞ < d:
For any given x 2MS2
, compute S3(x)(a,b,c). Set S3ðyÞða; b; cÞ ¼ S3ðxÞða; b; cÞ þ 2d

rd
. Now using any appropri-

ate reconstructing methodology (see Section 5.1), construct a microstructure y satisfying S1,S2 as well as
S3(y)(a,b,c). Since y satisfies S1,S2, it belongs to MS2

and since it satisfies S3(y)(a,b,c),
Dðx; yÞ ¼
X
ða;b;cÞ
jS3ða; b; cÞðxÞ � S3ða; b; cÞðyÞj ¼

X
ða;b;cÞ

S3ða; b; cÞðxÞ � S3ða; b; cÞðxÞ þ
2d
rd

����
���� ¼ X

ða;b;cÞ

2d
rd
6 d:
Hence, ðMS2
;DÞ is dense. h

Lemma 4.4. The metric space ðMS2
;DÞ is complete.

Proof. Consider any Cauchy sequence, {xn}, in MS2
. A Cauchy sequence in MS2

satisfies the following:
Given � > 0; 9N such that Dðx n; xmÞ < �; whenever m; n > N :
That is, Dðxnþk; xnÞ ! 0 uniformly in k as n ?1. We have defined two microstructures to be equivalent if
Dðx; yÞ ¼ 0 (see Remark 4.2). Hence, by this definition of equivalence of microstructures, it follows that
the sequence converges to a point x 2MS2

(the limit point of this sequence satisfies S = {S1,S2}, hence it be-
longs to MS2

). Since every Cauchy sequence in MS2
converges in MS2

, the metric space ðMS2
;DÞ is complete

(Lemma 43.1 in [22]). h
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